
WORKSHOP

Custom data collection with BASIC

Toys presentation

Each table will be separated in two group and there is one eWON for each group.

The LAN IP address are written on it.

GROUP 1 GROUP 2
LAN IP: 10.20.1.1 LAN IP: 10.20.2.1
MASK: 255.255.0.0 MASK: 255.255.0.0

Login: adm Pwd: adm Login: adm Pwd: adm

WAN IP: DHCP WAN IP: DHCP

GROUP X GROUP Y
LAN IP: 10.20.X.1 LAN IP: 10.20.Y.1
MASK: 255.255.0.0 MASK: 255.255.0.0

Login: adm Pwd: adm Login: adm Pwd: adm

WAN IP: DHCP WAN IP: DHCP

2/17

To Internet
(DHCP)

Group 01 Group 02

230VDC
For your laptops,
chargers, ...

Exercise 1 : IOSend / IORcv
Purpose:
The phone number to call is stored in a char buffer on the PLC.
I want to read in one Modbus request this phone number.

eWON configuration – Modbus Client
As the IOSend / IORcv basic functions use an IOServer, you must configure it.
For this exercise, as we use ModbusTCP, simply starts the Modbus IOServer is enough.
You do that by enabling one topic.

eWON configuration – Modbus Server
For this exercise, your eWON will also play the PLC through the ModbusTCP Server

Server config:
For playing the PLC, your eWON requires to have the ModbusTCP server enabled.
It's enabled by default.

And some registers representing the char buffer
published in ModbusTCP.
Every Tags on eWON can be published in
ModbusTCP, then, simply define 10 MEM tags
(representing 20 chars) on your eWON and
configure each tags to publish on ModbusTCP.

Phone_01 : register 1000
Phone_02 : register 1001
…
Phone_10 : register 1009

Your eWON is already configured with these tags.

3/17

Program.bas
The eWON is already programmed with some Basic codes showing how use the IOSend/IORcv
functions... but not with the new BASIC2 features.
The purpose of this first exercise is to rework this little program to make it more parametrisable /
readable by using new function declarations.

The code (version 1) is at the section

Build the Modbus frame (A$) to
send to the IOServer

Send the frame to IOServer

Wait the end of the IOSend

Read the IOServer answer

Error test
Answer is “#ERR” in case of error.

Extract the useful data from the
answer

You can place your Basic2 code into the following empty section

4/17

To test this (and your) program, you need to:
1. adapt the IP address (B$) to match your eWON IP address.

Ex: B$ = “100,10.20.17.1” if you are the Group17

NB: the first value “100” is the modbus Slave address. It's by default 100 for the eWON
modbus Server.

2. Set some values into the PLC (the phone tags)... if you talk currently the ASCII, set manually
some values in Phone_xx tags... if not, call

GOTO InitReg

3. call the procedure
GOTO ReadPhone

NB: If you are not familiar with modbus protocol, use the debugger to
follow step by step the execution of the program.

5/17

Playtime

For Beginner

Write the following code into your eWON, and execute it step by step

For Basic Friends

I propose to you to rework the program (on previous page) to make it more parameterizable /
readable by using new function declarations.

Now, you can rework/debug the code of ReadPhone

You'll find technical info about IOSend / IORcv functions in appendices,
as well as modbus frame format.

6/17

Exercise 2 : Telnet protocol implementation
Purpose:
On the Machine, there is a RaspberryPi handling the servo-motors and monitoring some data.
We can interrogate this RPi through a Telnet like protocol.

And we want the Flexy to retrieve the data from the RPi and put them into tags

The eWON is already programmed with some Basic codes reading this Telnet protocol.
For that, you only need the using BASIC instructions : OPEN, PUT, GET and CLOSE

The purpose of this second exercise is to rework this little program to make it more parametrisable /
readable with using new function declarations.

The code (version 1) is at the section

And you can place your Basic2 code into the following empty section

7/17

ServoDriver Telnet protocol
ServoDriver has a built-in server to answer some basic requests.
Open a tcp socket on port 8023.
You have to login first:
Username: guest
Password:

user: guest
password: guest
If user/password or if Number of connections (50) is exceeded, the telnet connection is closed.

Otherwise a welcome message is returned, followed by a prompt
Welcome to the FlexThink ServoDriver.
ServoDriver>

You can have the list of supported command by typing “help”
ServoDriver>help
Help on built in commands

? [<command>] - Display help
BYE - Exit the command shell
CURRENT - return the current consumed by servos
EXIT - Exit the command shell
HELP [<command>] - Display help
HISTORY - Display the command history
LOGOUT - Exit the command shell
POWER - return the global power consumed by servos
PRESSURE - return the current atmospheric pressure
QUIT - Exit the command shell
SERVO-COUNTERS <servo_ID> - get the number of change for servo <servo_ID>
TEMPERATURE - return the current on-board temperature
VOLTAGE - return the servo voltage
ServoDriver>

Then type de command to get the value…
ServoDriver>TEMPERATURE
33.0
ServoDriver>

The servo-counters command requires the id of the servo as parameters.
Each time the position of a servo changes, its counter is incremented.
ServoDriver>SERVO-COUNTERS 0
0
ServoDriver>SERVO-COUNTERS 1
8

Values are returned followed by a carriage return.
If something wrong happens, error message are preceded by “ERROR: “
ServoDriver>SERVO-COUNTERS 18
ERROR: Cannot get stats for servo 18
ServoDriver>

8/17

Program.bas (old Basic version)

9/17

Playtime
The purpose of this first exercise is to rework this little program to make it more parameterizable /
readable by using new function declarations.

Now, you can rework/debug the code of Telnet.

10/17

Solutions

Exercise 1

11/17

Exercise 2

12/17

13/17

14/17

Appendices

IOSend / IORcv : syntax

15/17

16/17

Modbus protocol frame description

17/17

	Toys presentation
	Exercise 1 : IOSend / IORcv
	eWON configuration – Modbus Client
	eWON configuration – Modbus Server
	Program.bas

	Playtime
	For Beginner
	For Basic Friends

	Exercise 2 : Telnet protocol implementation
	ServoDriver Telnet protocol
	Program.bas (old Basic version)
	Playtime

	Solutions
	Exercise 1
	Exercise 2

	Appendices
	IOSend / IORcv : syntax
	Modbus protocol frame description

